Computational Thinking: Abstraction & Pattern Generalization

Abstraction is the process of identifying and extracting relevant information to define main idea(s) in order to create a generic representation of a problem.

Pattern Generalization is the process of creating models, rules, principles or theories of observed patterns to test predicted outcomes and determining the correct relationship between the variables to accurately represent the problem.

Examples of Abstraction & Pattern Generalization

Science
- Models of natural processes such as the water cycle, nitrogen cycle and rock cycle
- Classification of living organisms (e.g. mammals, marine organisms)
- Periodic table

Mathematics
- Equations
- Geometric representations
- Graphing

Art
- Picasso

English Language Arts
- Sentence structure
- Parts of speech
- Mad Libs™
Abstraction helps create models related to a problem that can work for large quantities and ranges of data.

Other Examples of Abstraction (modelling)
- Children learning about physics using a ball and ramp
- Older students conducting experiments and graphing results in an acceleration lab
- Engineers designing roller coasters

Practicing Abstraction & Pattern Generalization
- Computational Thinking (Make a Monster—studio.code.org)
- Candy Dichotomous Key
- Mad Libs™
- Mad Glibs (studio.code.org)
- Mad Takes (www.madtakes.com)
- Describing an Everyday Object (Google)
- Tangrams
- GeoShapes (National Geographic Kids)

The key to abstraction is to be able to identify and filter out or ignore the details not necessary to solve the problem. From there, a model (equation, image, word, simulation, etc.) can be developed to represent all the important variables.

Access the Course: Problem Solving through Computational Thinking for Educators
Access this Module: Abstraction & Pattern Generalization